4.7 Article

On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 116, 期 22, 页码 9997-10019

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1470200

关键词

-

向作者/读者索取更多资源

A theory for calculating time- and frequency-domain optical spectra of pigment-protein complexes is presented using a density matrix approach. Non-Markovian effects in the exciton-vibrational coupling are included. A correlation function is deduced from the simulation of 1.6 K fluorescence line narrowing spectra of a monomer pigment-protein complex (B777), and then used to calculate fluorescence line narrowing spectra of a dimer complex (B820). A vibrational sideband of an excitonic transition is obtained, a distinct non-Markovian feature, and agrees well with experiment on B820 complexes. The theory and the above correlation function are used elsewhere to make predictions and compare with data on time-domain pump-probe spectra and frequency-domain linear absorption, circular dichroism and fluorescence spectra of Photosystem II reaction centers. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据