4.4 Article

van't Hoff and calorimetric enthalpies II: Effects of linked equilibria

期刊

BIOCHEMISTRY
卷 41, 期 23, 页码 7501-7507

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi025626b

关键词

-

向作者/读者索取更多资源

The complexity of binding reactions, including the linkage with other equilibria, is becoming increasingly apparent in biological processes such as signal transduction. Understanding these interactions requires obtaining thermodynamic profiles for each of the equilibria that occur in a binding event. Concern has been raised as to whether linked equilibria contribute differently to thermodynamics, such as DeltaHdegrees and DeltaC(P), obtained from calorimetric and van't Hoff methods. We have previously shown that linked equilibria do not contribute differently to the van't Hoff and calorimetrically determined DeltaHdegrees for processes such as linked folding or hydration. Here, examples of proton and ion linkage are examined. We show that there is no reason to expect the calorimetric and van't Hoff DeltaHdegrees to be different, even without prior knowledge of the presence or absence of linked equilibria, as long as the system is permitted to equilibrate. However, it is possible to create experimental scenarios that result in DeltaH(cal)degrees and DeltaH(vH)degrees discrepancies. Furthermore, it is found that the presence of linked equilibria in all cases can result in nonconventional DeltaHdegrees and DeltaC(P) profiles, making data analysis nontrivial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据