4.8 Article

Activation of MyoD-dependent transcription by cdk9/cyclin T2

期刊

ONCOGENE
卷 21, 期 26, 页码 4137-4148

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1205493

关键词

cdk9; cyclins; MyoD; muscle differentiation; phosphorylation

资金

  1. Telethon [TCP00081] Funding Source: Medline

向作者/读者索取更多资源

Myogenic transcription is repressed in myoblasts by serum-activated cyclin-dependent kinases, such as cdk2 and cdk4. Serum withdrawal promotes muscle-specific gene expression at least in part by down-regulating the activity of these cdks. Unlike the other cdks, cdk9 is not serum- or cell cycle-regulated and is instead involved in the regulation of transcriptional elongation by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase It. While ectopic expression of cdk2 together with its regulatory subunits (cyclins E and A) inhibits myogenic transcription, overproduction of cdk9 and its associated cyclin (cyclin T2a) strengthens MyoD-dependent transcription and stimulates myogenic differentiation in both MyoD-converted fibroblasts and C2C12 muscle cells. Conversely, inhibition of cdk9 activity by a dominant negative form (cdk9-dn) represses the myogenic program. Cdk9, cyclinT2 and MyoD can be detected in a multimeric complex in C2C12 cells, with the minimal cdk9-binding region of MyoD mapping within 101-161 aa of the bHLH region. Finally, cdk9 can phosphorylate MyoD in vitro, suggesting the possibility that cdk9/cycT2a regulation of muscle differentiation includes the direct enzymatic activity of the kinase on MyoD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据