4.8 Article

Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells

期刊

NATURE
卷 417, 期 6890, 页码 738-741

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature00808

关键词

-

向作者/读者索取更多资源

According to the temporal coding hypothesis(1), neurons encode information by the exact timing of spikes. An example of temporal coding is the hippocampal phase precession phenomenon, in which the timing of pyramidal cell spikes relative to the theta rhythm shows a unidirectional forward precession during spatial behaviour(2,3). Here we show that phase precession occurs in both spatial and non-spatial behaviours. We found that spike phase correlated with instantaneous discharge rate, and precessed unidirectionally at high rates, regardless of behaviour. The spatial phase precession phenomenon is therefore a manifestation of a more fundamental principle governing the timing of pyramidal cell discharge. We suggest that intrinsic properties of pyramidal cells have a key role in determining spike times, and that the interplay between the magnitude of dendritic excitation and rhythmic inhibition of the somatic region is responsible for the phase assignment of spikes(4,5)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据