4.6 Article

Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope

期刊

JOURNAL OF APPLIED PHYSICS
卷 91, 期 12, 页码 9821-9826

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1478793

关键词

-

向作者/读者索取更多资源

The characteristics of dislocation-related leakage current paths in an AlGaN/GaN heterostructure grown by molecular-beam epitaxy and their mitigation by local surface modification have been investigated using conductive atomic force microscopy. When a voltage is applied between the tip in an atomic force microscope (AFM) and the sample, a thin insulating layer is formed in the vicinity of the leakage paths where current is observed. As the insulating layer reaches a thickness of 2-3 nm, the leakage current is blocked and subsequent growth of the layer is prevented. Although conductive screw or mixed dislocations are observed, dislocations with a screw component that do not conduct current are also apparent. The reverse-bias leakage current is reduced by a factor of two in a large-area diode fabricated on an area modified in this manner with an AFM compared to typical diodes fabricated on unmodified areas with comparable series resistances, confirming that dislocation-related leakage current paths are a major component of the reverse-bias leakage current in Schottky diodes fabricated on nitride material. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据