4.7 Article

Dynamic electrophoretic mobility of a concentrated dispersion of particles with a charge-regulated surface at arbitrary potential

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 250, 期 2, 页码 327-336

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcis.2002.8300

关键词

dynamic electrophretic mobility; concentrated dispersion; charge-regulated surface; arbitrary potential

向作者/读者索取更多资源

The dynamic electrophoretic mobility of a concentrated dispersion of biocolloids such as cells and microorganisms is modeled theoretically. Here, a biological particle is simulated by a particle, the surface of which contains dissociable functional groups. The results derived provide basic theory for the quantification of the surface properties of a biocolloid through an electroacoustic device, which has the merit of making direct measurement on a concentrated dispersion without dilution. Two key parameters are defined to characterize the phenomenon under consideration: the first, A, is associated with the pH of the dispersion, and the second, B, is associated with the equilibrium constant of the dissociation reaction of the functional group. We show that if A is large and/or B is small, the surface potential is high, and the effect of double-layer polarization becomes significant. In this case the dynamic electrophoretic mobility may have a local maximum and a phase lead as the frequency of the applied electric field varies. Due to the hydrodynamic interaction between neighboring particles, the dynamic electrophoretic mobility decreases with the concentration of dispersion. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据