4.6 Article

Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals

期刊

JOURNAL OF APPLIED PHYSICS
卷 91, 期 12, 页码 9561-9571

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1478790

关键词

-

向作者/读者索取更多资源

Initial stage kinetics of the cadmium sulfide (CdS) phase transition was investigated using picosecond time-resolved electronic spectroscopy in plate-impact shock wave experiments. Real-time changes in the electronic spectra were observed, with 100 ps time resolution, in CdS single crystals shocked along a and c axes to stresses ranging between 35 and 90 kbar, which is above the phase-transition threshold stress of approximately 30 kbar. Significant difference in the transformation kinetics was observed for the two crystal orientations. At sufficiently high instantaneous stress, above approximately 60 to 70 kbar for a axis and 50 kbar for c axis, transformation to a metastable state appears to reach a constant state within the 100 ps time resolution. At lower instantaneous stresses, an incubation period on the order of several nanoseconds is observed prior to the onset of electronic changes that mark the onset of the structural change. The subsequent increase in absorbance was quite rapid, with a constant state being reached within the first few nanoseconds after the onset of the structural changes. These results suggest that the nucleation process determines the transformation rate. This insight into transformation kinetics, along with the transformation mechanism obtained from the high-stress experiments, was used to develop a phenomenological model, incorporating ideas of nucleation and growth in martensitic transformations, to simulate the time-dependent extinction of light observed in our experiments. The calculational results incorporating both extinction due to light absorption by the daughter phase volumes and scattering of light by small volumes of the daughter phase were in good agreement with experimental observations. Finally, the orientational differences observed in the transformation kinetics were interpreted in terms of the differences in the elastic-plastic response for the two orientations. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据