3.8 Article

Elevated arylalkylamine-N-acetyltransferase (AA-NAT) gene expression in medial habenular and suprachiasmatic nuclei of hibernating ground squirrels

期刊

MOLECULAR BRAIN RESEARCH
卷 102, 期 1-2, 页码 9-17

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-328X(02)00138-9

关键词

epithalamus; extra-pineal; hibernation; hypothalamus; in situ hybridization; melatonin biosynthesis

向作者/读者索取更多资源

Hibernation. an adaptive response for energy conservation in mammals, involves a variety of physiological changes. Melatonin is linked with the regulation of core body temperature and intervenes in generating circadian cycles; its role in seasonal (circannual) rhythms of hibernation is explored here. Melatonin is primarily produced in the pineal gland. Since arylalkylamine-N-acetyltransferase (AA-NAT) is the rate-limiting enzyme for synthesizing melatonin, AA-NAT gene expression was investigated to assess the possible role of melatonin in hibernation. The findings presented here utilized combined in situ hybridization and immunohistochemistry methodologies to evaluate the AA-NAT mRNA expression in brains of both hibernating and non-hibernating ground squirrels, Brains were examined for the expression of AA-NAT mRNA using a oligonucleotide AA-NAT probe: antibody against neurofilament-70 (NF-70) was used as a neuronal marker. All hibernating animals expressed significantly (P<0.01) elevated levels of AA-NAT mRNA in both the epithalamic medial habenulax nuclei (MHb) area and the hypothalamic suprachiasmatic nuclei (SCN), which is also known as the master biologic clock. These findings represent the first demonstration of the expression of mRNA encoding for AA-NAT in the extra-pineal (i.e. SCN and MHb) sites of thirteen-lined ground squirrels and indicate that the habenular nucleus may be an important supplementary location for melatonin biosynthesis. The data presented here indicate that AA-NAT gene is one of the few specific genes up-regulated during hibernation and suggest that elevation of its expression in SCN and MHb may play an essential role in the generation and maintenance of hibernation, Published by Elsevier Science B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据