4.5 Article

Growth arrest by the LKB1 tumor suppressor:: induction of p21WAF1/CIP1

期刊

HUMAN MOLECULAR GENETICS
卷 11, 期 13, 页码 1497-1504

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/11.13.1497

关键词

-

向作者/读者索取更多资源

Germline mutations of the LKB1 tumor suppressor gene lead to Peutz-Jeghers syndrome (PJS), with a predisposition to cancer. LKB1 encodes for a nuclear and cytoplasmic serine/threonine kinase, which is inactivated by mutations observed in PJS patients. Restoring LKB1 activity into cancer cell lines defective for its expression results in a G(1) cell cycle arrest. Here we have investigated molecular mechanisms leading to this arrest. Reintroduced active LKB1 was cytoplasmic and nuclear, whereas most kinase-defective PJS mutants of LKB1 localized predominantly to the nucleus. Moreover, when LKB1 was forced to remain cytoplasmic through disruption of the nuclear localization signal, it retained full growth suppression activity in a kinase-dependent manner. LKB1-mediated G(1) arrest was found to be bypassed by co-expression of the G(1) cyclins cyclin D1 and cyclin E. In addition, the protein levels of the CDK inhibitor p21(WAF1/CIP1) and p21 promoter activity were specifically upregulated in LKB1-transfected cells. Both the growth arrest and the induction of the p21 promoter were found to be p53-dependent. These results suggest that growth suppression by LKB1 is mediated through signaling of cytoplasmic LKB1 to induce p21 through a p53-dependent mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据