4.6 Article

First-principles calculations of metal stabilized Si20 cages -: art. no. 235417

期刊

PHYSICAL REVIEW B
卷 65, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.235417

关键词

-

向作者/读者索取更多资源

It is well known that sp(2) bonding in carbon can result in stable cage structures, but pure Si clusters with similar cage structures are unstable. Using first-principles calculations, we show that a dodecahedral cage of silicon can be stabilized dynamically as well as energetically by doping with Ba, Sr, Ca, Zr, and Pb atoms to create structures of silicon similar to that of the smallest carbon fullerene. The stability and bonding in such cages shed light on Si clathrates in which Si-20 is the basic building block of the structure. Moreover, the charge distributions and highest-occupied-lowest-unoccupied molecular orbital gaps for these cage structures can be tuned by changing the metal atom. This allows additional freedom for the design of nanomaterials involving Si.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据