4.4 Article

Clavanin permeabilizes target membranes via two distinctly different pH-dependent mechanisms

期刊

BIOCHEMISTRY
卷 41, 期 24, 页码 7529-7539

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi012162t

关键词

-

向作者/读者索取更多资源

The pH dependence of the antimicrobial and membrane activity of clavanin A, a peptide antibiotic that is rich in histidines and glycines, was analyzed in growth and membrane leakage experiments. Clavanin A more effectively inhibited the growth of the test organism Lactobacillus sake when the pH of the medium was lowered. Whereas the wild-type peptide efficiently released fluorophores from unilamellar vesicles at neutral pH according to a nonspecific permeabilization mechanism, it did not permeabilize model bilayers at low pH. It was therefore suggested that this peptide uses a distinct mode of action under acidic conditions different than that used around neutral pH. However, at low pH, the membrane is still the target for clavanin A, as the peptide collapsed both vital transmembrane proton gradients and ion gradients under these conditions. Clavanin A did not act as a ionophore across phospholipid bilayers, indicating that membrane constituents other than membrane phospholipids are involved in the dissipation of transmembrane ion gradients. Membrane proteins that generate transmembrane ion gradients are suggested to be the targets for clavanin A at low pH. In addition to the histidines, the three glycine residues of clavanin A are shown to play an important role in the specific mode of interaction with these membrane targets. These residues may induce a flexible hydrophobic conformation that allows the peptide to exert different membrane activities. This study demonstrates that clavanin A is a special membrane-active peptide that has access to two markedly distinct pH-dependent modes of actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据