4.8 Article

Crystal structure of parallel quadruplexes from human telomeric DNA

期刊

NATURE
卷 417, 期 6891, 页码 876-880

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature755

关键词

-

向作者/读者索取更多资源

Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, are fundamental in protecting the cell from recombination and degradation(1). Disruption of telomere maintenance leads to eventual cell death, which can be exploited for therapeutic intervention in cancer. Telomeric DNA sequences can form four-stranded (quadruplex) structures(2-4), which may be involved in the structure of telomere ends(5). Here we describe the crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K+ concentration that approximates its intracellular concentration. K+ ions are observed in the structure. The folding and appearance of the DNA in this intramolecular quadruplex is fundamentally different from the published Na+-containing quadruplex structures(2,4,6). All four DNA strands are parallel, with the three linking trinucleotide loops positioned on the exterior of the quadruplex core, in a propeller-like arrangement. The adenine in each TTA linking trinucleotide loop is swung back so that it intercalates between the two thymines. This DNA structure suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomere-associated proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据