4.7 Article

Solution conformations of unmodified and A37N6-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNAPhe

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 319, 期 5, 页码 1015-1034

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)00382-0

关键词

prenylation; U-turn; RNA dynamics; translation defect; frameshift

向作者/读者索取更多资源

The modification of RNA nucleotide bases, a fundamental process in all cells, alters the chemical and physical properties of RNA molecules and broadly impacts the physiological properties of cells. tRNA molecules are by far the most diverse-modified RNA species within cells, containing as a group >80% of the known 96 chemically unique nucleic acid modifications. The greatest varieties of modifications are located on residue 37 and play a role in ensuring fidelity and efficiency of protein synthesis. The enzyme dimethylallyl (Delta(2)-isopentenyl) diphosphate:tRNA transferase catalyzes the addition of a dimethylallyl group to the exocyclic amine nitrogen (N6) of A(37) in several tRNA species. Using a 17 residue oligoribonucleotide corresponding to the anticodon arm of Escherichia coli tRNA(Phe), we have investigated the structural and dynamic changes introduced by the dimethylallyl group. The unmodified RNA molecule adopts stem-loop conformation composed of seven base-pairs and a compact three nucleotide loop. This conformation is distinctly different from the U-turn motif that characterizes the anticodon arm in the X-ray crystal structure of the fully modified yeast tRNA(Phe). The adoption of the tri-nucleotide loop by the purine-rich unmodified tRNA(Phe) anticodon arm suggests that other anticodon sequences, especially those containing pyrimidine bases, also may favor a tri-loop conformation. Introduction of the dimethylallyl modification increases the mobility of nucleotides of the loop region but does not dramatically alter the RNA conformation. The dimethylallyl modification may enhance ribosome binding through multiple mechanisms including destabilization of the closed anticodon loop and stabilization of the codon-anticodon helix. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据