4.8 Article

Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 25, 页码 7548-7554

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja012675n

关键词

-

向作者/读者索取更多资源

Methylation of aniline by methanol on zeolite H-Y has been investigated by in situ C-13 MAS NMR spectroscopy under flow conditions. The in Situ 13C continuous-flow (CF) MAS NMR experiments were performed at reaction temperatures between 473 and 523 K, molar methanol-to-aniline ratios of 1:1 to 4:1, and modified residence times of (CH3OH)-C-13 between 20 and 100 (g.h)/mol. The methylation reaction was shown to start at 473 K. N,N,N-Trimethylanilinium cations causing a 13C NMR signal at 58 ppm constitute the major product on the catalyst surface. Small amounts of protonated N-methylaniline ([PhNH2CH3](+)) and N,N-dimethylaniline ([PhNH(CH3)(2)](+)) were also observed at ca. 39 and 48 ppm, respectively. After increase of the temperature to 523 K, the contents of N,N-dimethylanilinium cations and ring-alkylated reaction products strongly increased, accompanied by a decrease of the amount of N,N,N-trimethylanilinium cations. With application of the in situ stopped-flow (SF) MAS NMR technique, the decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y to N,N-dimethylanilinium and N-methylanilinium cations was investigated to gain a deeper insight into the reaction mechanism. The results obtained allow the proposal of a mechanism consisting of three steps: (i) the conversion of methanol to surface methoxy groups and dimethyl ether (DME); (d) the alkylation of aniline with methanol, methoxy groups, or DME leading to an equilibrium mixture of N,N,N-trimethylanilinium, N,N-dimethylanilinium, and N-methylanilinium cations attached to the zeolite surface; (iii) the deprotonation of NN-dimethylanilinium and N-methylanilinium cations causing the formation of N,N-dimethylaniline (NNDMA) and N-methylaniline (NMA) in the gas phase, respectively. The chemical equilibrium between the anilinium cations carrying different numbers of methyl groups is suggested to play a key role for the products distribution in the gas phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据