4.6 Article

Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 84, 期 14, 页码 2660-2669

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/app.10436

关键词

nanotubes; polymer-based nanocomposites; structural properties; shear alignment

向作者/读者索取更多资源

The aim of this article was to elucidate the basic relationships between processing conditions and the mechanical and electrical properties of multiwalled carbon nanotube reinforced polymer composites. In conventional chopped fiber reinforced polymer composites, uniform distributions of fibers throughout the matrix are critical to producing materials with superior physical properties. Previous methods have dispersed carbon nanotubes by aggressive chemical modification of the nanotubes or by the use of a surfactant prior to dispersion.(1,2) Here, ultrasonic energy was used to uniformly disperse multiwalled nanotubes (MWNTs) in solutions and to incorporate them into composites without chemical pretreatment. Polystyrene (PS) solutions containing MWNTs were cast and spun to yield thin film MWNT composites, The rheology of PS/MWNT suspensions was modeled using the Carreau equation. MWNTs were found to align at the shear rates generated by the spin casting process. The tensile modulus and strain to failure of samples compared well to classical micromechanical models, increasing with MWNT loading. The composite films showed lower strains at the yield stress than neat PS films. The presence of MWNTs at 2.5 vol % fraction approximately doubles the tensile modulus, and transforms the film from insulating to conductive (surface resistivity, rho, approaching 10(3) Omega/square). (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据