4.7 Article

Renal myogenic response - Kinetic attributes and physiological role

期刊

CIRCULATION RESEARCH
卷 90, 期 12, 页码 1316-1324

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000024262.11534.18

关键词

renal hemodynamics; myogenic vasoconstriction; frequency domain analysis; renal autoregulation; mathematical modeling

向作者/读者索取更多资源

The kinetic attributes of the afferent arteriole myogenic response were investigated using the in vitro perfused hydronephrotic rat kidney. Equations describing the time course for pressure-dependent vasoconstriction and vasodilation, and steady-state changes in diameter were combined to develop a mathematical model of autoregulation. Transfer functions were constructed by passing sinusoidal pressure waves through the inodel. These findings were compared with results derived using data from instrumented conscious rats. In each case, a reduction in gain and increase in phase were observed at frequencies of 0.2 to 0.3 Hz. We then examined the impact of oscillating pressure signals. The model predicted that pressure signals oscillating at frequencies above the myogenic operating range would elicit a sustained vasoconstriction the magnitude of which was dependent on peak pressure. These predictions were directly confirmed in the hydronephrotic kidney. Pressure oscillations presented at frequencies of I to 6 Hz elicited sustained afferent vasoconstrictions and the magnitude of the response depended exclusively on the peak pressure. Elevated systolic pressure elicited vasoconstriction even if mean pressure was reduced. These findings challenge the view that the renal myogenic response exists to maintain glomerular capillary pressure constant, but rather imply a primary role in protecting against elevated systolic pressures. Thus, the kinetic features of the afferent arteriole allow this vessel to adjust tone in response to changes in systolic pressures presented at the pulse rate. We suggest that the primary function of this mechanism is to protect the glomerulus from the blood pressure power that is normally present at the pulse frequency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据