4.6 Article

Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 26, 页码 23236-23245

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111446200

关键词

-

向作者/读者索取更多资源

Werner syndrome is a hereditary premature aging disorder characterized by genome instability. The product of the gene defective in WS, WRN, is a helicase/exonuclease that presumably functions in DNA metabolism. To understand the DNA structures WRN acts upon in vivo, we examined its substrate preferences for unwinding. WRN unwound a 3'-single-stranded (ss)DNA-tailed duplex substrate with streptavidin bound to the end of the 3'-ssDNA tail, suggesting that WRN does not require a free DNA end to unwind the duplex; however, WRN was completely blocked by streptavidin bound to the 3'-ssDNA tail 6 nucleotides upstream of the single-stranded/double-stranded DNA junction. WRN efficiently unwound the forked duplex with streptavidin bound just upstream of the junction, suggesting that WRN recognizes elements of the fork structure to initiate unwinding. WRN unwound two important intermediates of replication/repair, a 5'-ssDNA flap substrate and a synthetic replication fork. WRN was able to translocate on the lagging strand of the synthetic replication fork to unwind duplex ahead of the fork. For the 5'-flap structure, WRN specifically displaced the 5'-flap oligonucleotide, suggesting a role of WRN in Okazaki fragment processing. The ability of WRN to target DNA replication/repair intermediates may be relevant to its role in genome stability maintenance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据