4.7 Article

New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 117, 期 1, 页码 43-54

出版社

AIP Publishing
DOI: 10.1063/1.1480445

关键词

-

向作者/读者索取更多资源

The polarizable continuum model (PCM), used for the calculation of molecular energies, structures, and properties in liquid solution has been deeply revised, in order to extend its range of applications and to improve its accuracy. The main changes effect the definition of solute cavities, of solvation charges and of the PCM operator added to the molecular Hamiltonian, as well as the calculation of energy gradients, to be used in geometry optimizations. The procedure can be equally applied to quantum mechanical and to classical calculations; as shown also with a number of numerical tests, this PCM formulation is very efficient and reliable. It can also be applied to very large solutes, since all the bottlenecks have been eliminated to obtain a procedure whose time and memory requirements scale linearly with solute size. The present procedure can be used to compute solvent effects at a number of different levels of theory on almost all the chemical systems which can be studied in vacuo. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据