4.8 Review

Crystal engineering of NLO materials based on metal-organic coordination networks

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 35, 期 7, 页码 511-522

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar0001012

关键词

-

向作者/读者索取更多资源

Crystal engineering, the ability to predict and control the packing of molecular building units in the solid state, has attracted much attention over the past three decades owing to its potential exploitation for the synthesis of technologically important materials. We present here the development of crystal-engineering strategies toward the synthesis of noncentrosymmetric infinite coordination networks for use as second-order nonlinear optical (NLO) materials. Work performed mainly in our laboratory has demonstrated that noncentrosymmetric solids based on infinite networks can be rationally synthesized by combining unsymmetrical bridging ligands and metal centers with well-defined coordination geometries. Specifically, coordination networks based on 3D diamondoid and 2D grid structures can be successfully engineered with a high degree of probability and predictability to crystallize in noncentrosymmetric space groups. We have also included noncentrosymmetric solids based on 1D chains and related helical structures for comparison.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据