4.8 Article

Kinetics of cadmium uptake by chitosan-based crab shells

期刊

WATER RESEARCH
卷 36, 期 13, 页码 3219-3226

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(02)00044-1

关键词

chitosan; Cd removal; heavy metals; sorption; mass transfer; intraparticle diffusion

向作者/读者索取更多资源

Crushed crab shells were chemically treated to transform the chitin present into chitosan. Three particle sizes with average diameters of 0.65, 1.43 and 3.38 mm, average pore diameters ranging from approximate to 300 to 540 Angstrom, and a specific surface area of;:t 30 m(2)/g were obtained. Batch experiments were performed to study the uptake equilibrium and kinetics of cadmium by chitosan. Adsorption equilibrium followed a Freundlich relationship and was found to be independent of particle size indicating that adsorption takes place largely in the pore space. A high initial rate of cadmium uptake was followed by a slower uptake rate suggesting intraparticle diffusion as the rate-limiting step. The kinetic uptake data were successfully modeled using a pore diffusion model incorporating nonlinear adsorption. The effect of boundary layer resistance was modeled through inclusion of a mass transfer expression at the outside boundary, Two fitting parameters, the tortuosity factor (tau) and the mass transfer coefficient at the outside boundary (k(c)) were used. These parameters were unique for all solute and sorbent concentrations. The tortuosity factors varied from 1.5 for large particles to 5.1 for small particles. The mass transfer coefficient varied from 2 x 10(-7) m/s at 50 rpm to 2 x 10(-3) m/s at 200 rpm. At agitation rates below 100 rpm, boundary layer resistance reduced the uptake rate significantly. Its very high sorption capacity and relatively low production cost make chitosan an attractive sorbent for the removal of heavy metals from waste streams. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据