4.7 Article

Biologically engineered protein-graft-poly(ethylene glycol) hydrogels:: A cell adhesive and plasm in-degradable biosynthetic material for tissue repair

期刊

BIOMACROMOLECULES
卷 3, 期 4, 页码 710-723

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm015629o

关键词

-

向作者/读者索取更多资源

To address the need for bioactive materials toward clinical applications in wound healing and tissue regeneration, an artificial protein was created by recombinant DNA methods and modified by grafting of poly(ethylene glycol) diacrylate. Subsequent photopolymerization of the acrylate-containing precursors yielded protein-graft-poly(ethylene glycol) hydrogels. The artificial protein contained repeating amino acid sequences based on fibrinogen and anti-thrombin III, comprising an RGD integrin-binding motif, two plasmin degradation sites, and a heparin-binding site. Two-dimensional adhesion studies showed that the artificial protein had specific integrin-binding capability based on the RGD motif contained in its fibrinogen-based sequence. Furthermore, heparin bound strongly to the protein's anti-thrombin III-based region. Protein-graft-poly(ethylene glycol) hydrogels were plasmin degradable, had Young's moduli up to 3.5 kPa, and supported three-dimensional outgrowth of human fibroblasts. Cell attachment in three dimensions resulted from specific cell-surface integrin binding to the material's RGD sequence. Hydrogel penetration by cells involved serine-protease mediated matrix degradation in temporal and spatial synchrony with cellular outgrowth. Protein-graft-poly(ethylene glycol) hydrogels represent a new and versatile class of biomimetic hybrid materials that hold clinical promise in serving as implants to promote wound healing and tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据