4.6 Article

Nitric oxide modulates vascular disease in the remnant kidney model

期刊

AMERICAN JOURNAL OF PATHOLOGY
卷 161, 期 1, 页码 239-248

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)64175-2

关键词

-

资金

  1. NIDDK NIH HHS [R01 DK052121, R01 DK52121] Funding Source: Medline

向作者/读者索取更多资源

A loss of the microvascular endothelium occurs in the remnant kidney model of renal disease and may play an important role in progression (Kang et al, J Am Soc Nephrol, 12:1434, 2001). Given that nitric oxide (NO) is a potent endothelial cell survival factor, we hypothesized that stimulating (with L-arginine) or blocking (with nitro-L-arginine methyl ester, (L-NAME)) NO synthesis could modulate the integrity of the microvasculature and hence affect progression of renal disease. Rats underwent 5/6 nephrectomy (RK) and then were randomized at 4 weeks to receive vehicle, L-NAME, or L-arginine for 4 weeks. Systolic blood pressure and renal function was measured, an tissues were collected at 8 weeks for histological and molecular analyses. The effect of modulation of No on vascular endothelial growth factor (VEGF) expression in rat aortic vascular smooth muscle cells (SMC) and mouse medullary thick ascending limb tubular epithelial cells (mTAL) was also studied. Inhibition of NO with L-NAME was associated with more rapid progression compared to RK alone, with worse blood pressure, proteinuria, renal function, glomerulosclerosis, and tubulointerstitial fibrosis. The injury was also associated with more glomerular and peritubular capillary endothelial cell loss in association with an impaired endothelial proliferative response. interestingly, the preglomerular endothelium remained intact or was occasionally hyperplastic, and this was associated with a pronounced proliferation of the vascular SMCs with de novo expression of VEGF. Cell culture studies confirmed a divergent effect of NO inhibition on VEGF expression, with inhibition of VEGF synthesis in mTAL cells and stimulation of VEGF in vascular SMC. In contrast to the effects of NO inhibition, stimulation of NO with L-arginine had minimal effects in this rat model of progressive renal disease. These studies confirm that blockade of NO synthesis accelerates progression of renal disease in the remnant kidney model, and support the hypothesis that one of the pathogenic mechanisms may involve accelerated capillary loss and impaired angiogenesis of the renal microvasculature. Interestingly, inhibition of NO synthesis did not lead to a loss of the preglomerular endothelium, which may relate to the effect of NO blockade to stimulate VEGF synthesis in the adjacent vascular smooth muscle cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据