4.7 Article

Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain

期刊

EXPERIMENTAL NEUROLOGY
卷 176, 期 1, 页码 66-74

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/exnr.2002.7942

关键词

adeno-associated virus; dose response; gene therapy; gene transfer; green fluorescent protein; IRES; primary neuronal cultures; promoter; WPRE

资金

  1. NIA NIH HHS [P01 AG10485] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS37432] Funding Source: Medline

向作者/读者索取更多资源

Previous studies demonstrated that the rat neuron-specific enolase (NSE) promoter is effective for transgene expression in the brain in a variety of adeno-associated virus-2 vectors. This study evaluated the dose response and longer time course of this promoter and compared it to two cytomegalovirus/chicken beta-actin hybrid (CBA) promoter-based systems. NSE promoter-driven green fluorescent protein (GFP)-expressing neurons were found at doses as low as 107 particles, with expression increasing in a dose-dependent manner over a 3.3-log range. Bicistronic expression of GFP via an internal ribosome entry site coupled to the NSE promoter was also dose dependent, although the potency was decreased by 3.4-fold. The number of GFP-expressing neurons was stable for at least 25 months. The CBA promoter increased the numbers of GFP-expressing cells versus the NSE promoter, although the expression pattern remained neuronal and persisted for at least 18 months. The CBA promoter permitted detection of cells distal to the injection site that had retrogradely transported the vector from their terminal areas. Incorporating the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) into a CBA promoter vector induced greater expression levels in the hippocampus, as measured by stereological estimates of cell numbers and by Western blots, which demonstrated an 11-fold increase. Incorporation of the WPRE also improved transgene expression in primary neuronal cultures. The increased efficiency obtained with vector elements such as the CBA promoter and the WPRE may enhance the ability to genetically modify larger portions of the brain while requiring smaller doses and volumes. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据