4.8 Article

Microbial community dynamics during start-up of acidogenic anaerobic reactors

期刊

WATER RESEARCH
卷 36, 期 13, 页码 3203-3210

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(02)00022-2

关键词

16S-rRNA; acidogenic; DGGE; microbial community; sludge

向作者/读者索取更多资源

Start-up of two acidogenic reactors under mesophilic (37degreesC) and thermophilic (55degreesC) conditions was carried out with methanogenic granular sludge as an inoculum and dairy wastewater as feed. During these 71 days of the start-up period, microbial community dynamics in these two acidogenic reactors, as monitored by denaturing gradient gel electrophoresis (DGGE) and dot-blot hybridization with group-specific oligonucleotide probes, was correlated to reactor performance. Due to pH drop to 5.5, DGGE community fingerprints for domains Bacteria and Archaea populations showed significant shifts after 13 days of operation, and this change was accompanied with an increase in volatile fatty acid production, a decrease in methane formation, and rapid sludge disintegration, Dot-blot hybridization results further indicated that the decrease in methane production was related to the decrease in Archaea population in particular with methanogens from 34.1% of total 16S-rRNA in the seed sludge to 8% within the first 13 days, and to 25% at day 71. Among the methanogens monitored, the class Methanomicrobiales was the most abundant followed up by Methanobacteriales and Methanococcales. Due to an elevated temperature, the microbial community change was more significant and rapid in the thermophilic reactor than in the mesophilic reactor. Significant microbial population changes took place at the first 13 days for both reactors, but a longer period up to 71 days was required to establish a microbial community with a stable metabolic activity. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据