4.5 Article

Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause

期刊

OECOLOGIA
卷 132, 期 2, 页码 167-174

出版社

SPRINGER
DOI: 10.1007/s00442-002-0969-6

关键词

coin-flipping plasticity; risk-spreading; Curculio elephas; dimorphic variation; dormancy evolution

类别

向作者/读者索取更多资源

Diversified bet-hedging for life cycle duration is defined as within-generation variability in cycle length expressed by a single genotype maximising mean geometric fitness. Such plasticity is not predictive, i.e. it is not a response to cues from the environment that has a predictive value for the decision at hand. In evolutionary terms, diversified bet-hedging is perceived as an adaptation to environmental stochasticity. However, clear evidence of bet-hedging is scarce and exists only for a few desert plant species and one desert bee. In temperate insects, diversified bet-hedging for life cycle duration has been suspected in the chestnut weevil, but proximate factors responsible for individual variation are still unknown. From field experiments, we show that the frequency of the long cycle depends on larval weight and on the date when a larva abandons the fruit, but not on larval burying depth in the soil. Since the two first factors are known to depend on food and temperature and cannot lead to predictive plasticity, we give evidence of bet hedging in this temperate species. Indeed, despite a cost associated with prolonged diapause (extra mortality and loss of reproductive opportunity), a previous study showed that plasticity for life cycle duration, such as discussed in this paper, maximises mean geometric fitness and persistence probability in the chestnut weevil. We propose the hypothesis that the variation in life cycle duration depends on individual variability of metabolic resources such as lipids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据