4.5 Article

Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal

期刊

出版社

SPRINGER
DOI: 10.1023/A:1015729507800

关键词

-

向作者/读者索取更多资源

Tantalum metal is a candidate for use as an implant material in high load-bearing bony defects, due to its attractive features such as high fracture toughness and high workability. This metal, however, does not have bone-bonding ability, i.e. bioactivity, and therefore the development of bioactive tantalum metal is highly desirable. It is known that the essential prerequisite for an artificial material to show bioactivity is to form a bonelike apatite layer on its surface in the body environment. The same type of apatite layer is formed in a simulated body fluid (SBF) with inorganic ion concentrations nearly equal to those of human blood plasma. The present authors previously showed that the apatite formation on tantalum metal in SBF was remarkably accelerated by treatment with 0.5 M-NaOH aqueous solution and subsequent firing at 300 degreesC, while untreated tantalum metal spontaneously formed the same apatite after a long soaking period. In the present study, the bonding strength of the apatite layer to the substrate was quantitatively evaluated in comparison with that to the untreated tantalum metal. Adhesive strength was measured as an estimation of bonding strength, and the surface microstructure of both the substrates was characterized in order to discuss the difference in the bonding strength in terms of surface structure. The apatite layer formed on the NaOH- and heat-treated tantalum metal shows higher adhesive strength than that formed on the untreated metal. The amorphous sodium tantalate layer formed on the tantalum metal by NaOH and heat treatments, has a smooth graded structure where its concentration gradually changes from the surface into the interior metal. Smooth graded structure with complex of apatite is constructed after soaking in SBF. The higher bonding strength of the apatite layer formed on the treated metal is attributed to its smooth graded structure. (C) 2002 Kluwer Academic Publishers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据