4.7 Article

How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis

期刊

PLANT CELL AND ENVIRONMENT
卷 25, 期 7, 页码 821-835

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-3040.2002.00866.x

关键词

potato (Solanum tuberosum ); wheat (Triticum aestivum ); carbon-nitrogen interactions; glutamate; glutamine; glycine; nitrogen assimilation; photosynthesis; serine; 2-oxoglutarate

向作者/读者索取更多资源

The aim of this work was to establish the quantitative impact of photorespiration on leaf amino acid contents. Attached leaves of wheat and potato were incubated for 30-40 min under defined conditions in which net CO2 uptake (A ) was manipulated by irradiance, ambient CO2 or ambient O-2 . The incubated portion of the leaf was sampled by a rapid-quench method and photorespiratory flux (v (o) ) was modelled from the measured rate of net CO2 uptake. In both wheat and potato, the ratio between glycine and serine showed a strong positive correlation with v (o) . Aspartate and alanine correlated negatively with v (o) but glutamate and glutamine showed less clear relationships. In potato, glutamate and glutamine did not correlate clearly with either A or v (o) . In wheat, glutamine showed a general increase with A but no relationship with v (o) , whereas 2-oxoglutarate contents correlated positively with v (o) and negatively with A . As a result, glutamine : glutamate and glutamine : 2-oxoglutarate increased with net CO2 uptake in wheat, observations that are attributed primarily to imperfect and variable coupling between the supply of NH3 in primary nitrogen assimilation and the associated delivery of 2-oxoglutarate to the chloroplast. A simple theoretical analysis is used to illustrate the potentially marked impact of primary nitrogen assimilation on leaf glutamine, even against a background of high rates of photorespiratory ammonia recycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据