4.7 Article

The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures

期刊

METABOLIC ENGINEERING
卷 4, 期 3, 页码 230-237

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/mben.2002.0228

关键词

metabolic engineering; cofactor; redox; pncB; FDH

向作者/读者索取更多资源

It is generally known that cofactors play a major role in the production of different fermentation products. This paper is part of a systematic study that investigates the potential of cofactor manipulations as a new tool for metabolic engineering. The NADH/NAD + cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD + and producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD + and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD + is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. We have previously investigated a genetic means of increasing the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase and have demonstrated that this manipulation provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically (Berrios-Rivera et al., 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD +-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229). The current work explores further the effect of substituting the native cofactor-independent formate dehydrogenase (FDH) by an NAD(+)-dependent FDH from Candida boidinii on the NAD(H/+) levels, NADH/NAD + ratio, metabolic fluxes and carbon-mole yields in Escherichia coli under anaerobic chemostat conditions. Overexpression of the NAD(+)-dependent FDH provoked a significant redistribution of both metabolic fluxes and carbonmole yields. Under anaerobic chemostat conditions, NADH availability increased from 2 to 3 mol NADH/mol glucose consumed and the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio and a decrease in the flux to lactate. It was also found that the NADH/NAD + ratio should not be used as a sole indicator of the oxidation state of the cell. Instead, the metabolic distribution, like the Et/Ac ratio, should also be considered because the turnover of NADH can be fast in an effort to achieve a redox balance. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据