4.4 Article

Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin

期刊

ARCHIVES OF MICROBIOLOGY
卷 178, 期 1, 页码 36-44

出版社

SPRINGER
DOI: 10.1007/s00203-002-0421-7

关键词

leucine; symbiosis; rhizobia; legume; transcriptional activation

向作者/读者索取更多资源

The role of leucine biosynthesis by Sinorhizobium meliloti in the establishment of nitrogen-fixing symbiosis with alfalfa (Medicago sativa) was investigated. The leuA gene from S. meliloti, encoding alpha-isopropylmalate synthase, which catalyses the first specific step in the leucine biosynthetic pathway, was characterized. S. meliloti LeuA(-) mutants were Leu auxotrophs and lacked alpha-isopropylmalate synthase activity. In addition, leuA auxotrophs were unable to nodulate alfalfa. Alfalfa roots did not seem to secrete enough leucine to support growth of leucine auxotrophs in the rhizosphere. Thus, this growth limitation probably imposes the inability to initiate symbiosis. However, in addition to the leucine auxotrophy, leuA strains were impaired in activation of nodulation genes by the transcriptional activator NodD1 in response to the plant flavone luteolin. By contrast, nod gene activation by NodD3, which does not involve plant-derived inducers, was unaffected. Our results suggest that a leucine-related metabolic intermediate may be involved in activation of nodulation genes by NodD1 and luteolin. This kind of control could be of relevance as a way to link bacterial physiological status to the response to plant signals and initiation of symbiosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据