4.7 Article

Traumatic brain injury in the immature mouse brain: Characterization of regional vulnerability

期刊

EXPERIMENTAL NEUROLOGY
卷 176, 期 1, 页码 105-116

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/exnr.2002.7941

关键词

traumatic brain injury; controlled cortical impact; immature brain; delayed neuronal damage; Fluoro-Jade; axonal degeneration

资金

  1. NINDS NIH HHS [NS14543] Funding Source: Medline

向作者/读者索取更多资源

We characterized the regional and temporal patterns of neuronal injury and axonal degeneration after controlled cortical impact of moderate severity in mice at postnatal day 21. Animals were euthanized at 1, 3, or 7 days after injury or sham operation. The brains were removed and prepared for immunolocalization of neurons and microglia/macrophages or subjected to Fluoro-Jade and silver stains, indicators of irreversible neuronal cell injury and axonal degeneration. There was significant neuronal loss in both the ipsi- and the contralateral cortices, ipsilateral hippocampus, and ipsilateral thalamus by 7 days post injury compared to sham-operated animals. Activated microglia/macrophages were most prominent in regions of neuronal loss including the ipsilateral cortex, hippocampus, and thalamus. Neuronal injury, as evidenced by Fluoro-Jade labeling, was not apparent in sham-operated animals. In injured animals, labeling was identified in the ipsilateral cortex and hippocampus at 1 and 3 days post injury. Silver- and Fluoro-Jade-labeled degenerating axons were observed in the ipsilateral subcortical white matter by 1 day post injury, in the ipsilateral external capsule, caudate putamen, and contralateral subcortical white matter by 3 days post injury, and in the internal capsule, pyramidal tracts, and cerebellar peduncles by 7 days post injury. Our findings demonstrate that controlled cortical impact in the developing brain generates neuronal loss in both the ipsilateral and the contralateral cortex, a temporally distinct pattern of subcortical. neuronal injury/death, and widespread white matter damage. These observations serve as an important baseline for studying human brain injury and optimizing therapies for the brain-injured child. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据