4.6 Article

Ab initio study of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process

期刊

JOURNAL OF APPLIED PHYSICS
卷 118, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4937409

关键词

-

向作者/读者索取更多资源

The mechanical properties of LixCoO2 under various Li concentrations and associated anisotropy have been systematically studied using the first principles method. During the lithium intercalation process, the Young's modulus, bulk modulus, shear modulus, and ultimate strength increase with increasing lithium concentration. Strong anisotropy of mechanical properties between a-axis and c-axis in LixCoO2 is identified at low lithium concentrations, and the anisotropy decreases with increasing lithium concentration. The observed lithium concentration dependence and anisotropy are explained by analyzing the charge transfer using Bader charge analysis, bond order analysis, and bond strength by investigating partial density of states and charge density difference. With the decrease of Li concentration, the charge depletion in the bonding regions increases, indicating a weaker Co-O bond strength. Additionally, the Young's modulus, bulk modulus, shear modulus, and toughness are obtained by simulating ab initio tensile tests. From the simulated stress-strain curves, LixCoO2 shows the highest toughness, which is in contraction with Pugh criterion prediction based on elastic properties only. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据