4.7 Article

Antisense gene therapy of brain cancer with an artificial virus gene delivery system

期刊

MOLECULAR THERAPY
卷 6, 期 1, 页码 67-72

出版社

CELL PRESS
DOI: 10.1006/mthe.2002.0633

关键词

gene therapy; liposomes; blood-brain barrier; brain cancer; insulin receptor; transferrin receptor; epidermal growth factor receptor

向作者/读者索取更多资源

Therapeutic genes are delivered to the nuclear compartment of cancer cells following intravenous administration with a non-immunogenic artificial virus gene delivery system that uses receptor-specific monoclonal antibodies (MAb) to navigate the biological barriers between the blood and the nucleus of the cancer cell. Mice implanted with intracranial U87 human glial brain tumors are treated with a nonviral expression plasmid encoding antisense mRNA against the human epidermal growth factor receptor gene (EGFR). The plasmid DNA is packaged within the interior of polyethylene glycol-modified (PEGylated) immunoliposomes, and delivered to the brain tumor with MAbs that target the mouse transferrin receptor (TRFR) and the human insulin receptor (INSR). The mouse TRFR MAb enables transport across the tumor vasculature, which is of mouse brain origin, and the INSR MAb causes transport across the plasma membrane and the nuclear membrane of the human brain cancer cell. The lifespan of the mice treated weekly with an intravenous administration of the EGFR antisense gene therapy packaged within the artificial virus is increased 100% relative to mice treated either with a luciferase gene or with saline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据