4.8 Article

Interpretation of tomography and spectroscopy as dual forms of quantum computation

期刊

NATURE
卷 418, 期 6893, 页码 59-62

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature00801

关键词

-

向作者/读者索取更多资源

It is important to be able to determine the state of a quantum system and to measure properties of its evolution. State determination can be achieved using tomography(1), in which the system is subjected to a series of experiments, whereas spectroscopy can be used to probe the energy spectrum associated with the system's evolution. Here we show that, for a quantum system whose state or evolution can be modelled on a quantum computer, tomography and spectroscopy can be interpreted as dual forms of quantum computation(2). Specifically, we find that the phase estimation algorithm(3) (which underlies a quantum computer's ability to perform efficient simulations(4) and to factorize large numbers(5)) can be adapted for tomography or spectroscopy. This is analogous to the situation encountered in scattering experiments, in which it is possible to obtain information about both the state of the scatterer and its interactions. We provide an experimental demonstration of the tomographic application by performing a measurement of the Wigner function (a phase space distribution) of a quantum system. For this purpose, we use three qubits formed from spin-1/2 nuclei in a quantum computation involving liquid-state nuclear magnetic resonance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据