4.7 Article

Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 320, 期 2, 页码 237-247

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)00472-2

关键词

porphobilinogen synthase; Pseudomonas aeruginosa; crystal structure; 5-fluorolevulinic acid; enzyme-inhibitor complex

向作者/读者索取更多资源

All natural tetrapyrroles, including hemes, chlorophylls and vitamin B-12, share porphobilinogen (PBG) as a common precursor. Porphobilinogen synthase (PBGS) synthesizes PBG through the asymmetric condensation of two molecules of aminolevulinic acid (ALA). Crystal structures of PBGS from various sources confirm the presence of two distinct binding sites for each ALA molecule, termed A and P. We have solved the structure of the active-site variant D139N of the Mg2+-dependent PBGS from Pseudomonas aeruginosa in complex with the inhibitor 5-fluorolevulinic acid at high resolution. Uniquely, full occupancy of both substrate binding sites each by a single substrate-like molecule was observed. Both inhibitor molecules are covalently bound to two conserved, active-site lysine residues, Lys205 and Lys260, through Schiff bases. The active site now also contains a monovalent cation that may critically enhance enzymatic activity. Based on these structural data, we postulate a catalytic mechanism for P. aeruginosa PBGS initiated by a C-C bond formation between A and P-side ALA, followed by the formation of the intersubstrate Schiff base yielding the product PBG. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据