4.6 Article

Type I shorthorn sculpin antifreeze protein - Recombinant synthesis, solution conformation, and ice growth inhibition studies

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 27, 页码 24073-24080

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M200307200

关键词

-

向作者/读者索取更多资源

A number of structurally diverse classes of antifreeze proteins that allow fish to survive in sub-zero ice-laden waters have been isolated from the blood plasma of cold water teleosts. However, despite receiving a great deal of attention, the one or more mechanisms through which these proteins act are not fully understood. In this report we have synthesized a type I antifreeze polypeptide (AFP) from the shorthorn sculpin Myoxocephalus scorpius using recombinant methods. Construction of a synthetic gene with optimized codon usage and expression as a glutathione S-transferase fusion protein followed by purification yielded milligram amounts of polypeptide with two extra residues appended to the N terminus. Circular dichroism and NMR experiments, including residual dipolar coupling measurements on a N-15-labeled recombinant polypeptide, show that the polypeptides are a-helical with the first four residues being more flexible than the remainder of the sequence. Both the recombinant and synthetic polypeptides modify ice growth, forming facetted crystals just below the freezing point, but display negligible thermal hysteresis. Acetylation of Lys-10, Lys-20, and Lys-21 as well as the N terminus of the recombinant polypeptide gave a derivative that displays both thermal hysteresis (0.4 degreesC at 15 mg/ml) and ice crystal faceting. These results confirm that the N terminus of wild-type polypeptide is functionally important and support our previously proposed mechanism for all type I proteins, in which the hydrophobic face is oriented toward the ice at the ice/water interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据