4.8 Article

Determining genetic variability in the distribution of sensitivities to toxic stress among and within field populations of Daphnia magna

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 36, 期 14, 页码 3045-3049

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es0158556

关键词

-

向作者/读者索取更多资源

To extrapolate credibly from individuals in the laboratory to field populations, it is essential to account for genetic differences in susceptibility to toxic stress and thus incorporate genetic variability into ecological risk estimates. In this study, the distribution of sensitivities across two toxic chemicals among and within field populations of Daphnia magna were used to quantify genetic variability. The study employed 30 D. magna clones from three geographically separate European populations. The sensitivity of each population studied and its constituent clones was estimated in terms of the concentrations of lambda-cyhalothrin and cadmium impairing individual fitness by 10 and 50% (EC10-50). Results revealed that differences in tolerance among clones within populations were large when compared with differences between populations and that the genetic range of sensitivities to toxic stress within populations was log-normally distributed. Furthermore, reported variation in sensitivity values to toxic stress among different laboratory species, populations, and clones was similar to that observed among and within field populations of Daphnia. These results suggest that it is possible to estimate genetic variability by estimating the tolerance distribution of laboratory populations and clones and that extrapolation approaches currently used in ecological risk assessment should explicitly incorporate genetic variability in tolerance into risk estimates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据