4.1 Article

Rheological properties of diblock copolymer/layered silicate nanocomposites

期刊

出版社

WILEY
DOI: 10.1002/polb.10209

关键词

block copolymers; nanocomposites; rheology

向作者/读者索取更多资源

The melt-state viscoelastic properties of nanocomposites prepared with a symmetrical polystyrene-polyisoprene block copolymer and organically modified layered silicates are examined. Nanocomposites based on three thermodynamically equivalent organically modified layered silicates, primarily differing in lateral disk diameter (d), are studied with small-amplitude oscillatory shear. The effects of the domain structure of the ordered block copolymer and the mesoscale dispersion of the layered silicates on the rheological properties are examined via a comparison of data for the nanocomposites in the ordered and disordered states of the block copolymer. Hybrids prepared with 5 wt % organically modified fluorohectorite (d similar to 10 mum) and montmorillonite (d similar to 1 mum) demonstrate a notable decrease in the frequency dependence of the moduli at low frequencies and a significant enhancement in the complex viscosity at low frequencies in the disordered state. This behavior is understood in terms of the development of a percolated layered-silicate network structure. However, the viscoelastic properties in the disordered state with 5 wt % organically modified laponite (d similar to 30 nm) and in the ordered state of the block copolymer for all layered silicates demonstrate only minor changes from those observed for the unfilled polymer. (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据