4.8 Article

A facile approach to architecturally defined nanoparticles via intramolecular chain collapse

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 29, 页码 8653-8660

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja026208x

关键词

-

向作者/读者索取更多资源

A novel approach is presented for the controlled intramolecular collapse of linear polymer chains to give well-defined single-molecule nanoparticles whose structure is directly related to the original linear polymer. By employing a combination of living free radical polymerization and benzocyclobutene (BCB) chemistry, nanoparticles can be routinely prepared in multigram quantities with the size being accurately controlled by either the initial degree of polymerization of the linear chain or the level of incorporation of the BCB coupling groups. The latter also allows the cross-link density of the final nanoparticles to be manipulated. In analogy with dendritic macromolecules, a significant reduction of up to 75% in the hydrodynamic volume is observed on going from the starting random coil linear chains to the corresponding nanoparticles. The facile nature of the living free radical process also permits wide variation in monomer selection and functional group incorporation and allows novel macromolecular architectures to be prepared. Furthermore, the use of block copolymers functionalized with benzocyclobutene groups in only one of the blocks gives, after intramolecular collapse, a hybrid architecture in which a single linear polymer chain is attached to the globular nanoparticle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据