4.7 Article

Adenovirus-mediated expression of p35 prevents hypoxia/reoxygenation injury by reducing reactive oxygen species and caspase activity

期刊

CARDIOVASCULAR RESEARCH
卷 55, 期 2, 页码 309-319

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0008-6363(02)00412-1

关键词

apoptosis; gene therapy; hypoxia/anoxia; oxidative phosphorylation; reperfusion

向作者/读者索取更多资源

Objective: This study aimed to examine the effects of adenovirus-mediated expression of p35, a baculovirus gene, on apoptosis induced by hypoxia/reoxygenation (H/R) in cardiomyocytes. Methods: Neonatal rat cardiomyocytes were infected with recombinant adenoviral vectors expressing p35 (Ad2/CMVp35) or no transgene (Ad2/CMVEV) and were then subjected to H/R. Separate groups of non-infected cardiomyocytes were treated with pharmacological caspase inhibitors or antioxidants. Cell viability, apoptosis, caspase activity, and cellular reactive oxygen species (ROS) were measured using various assays. Results: H/R decreased cell viability and increased cellular ROS levels, caspase activity, and cell apoptosis. Infection with Ad2/CMVp35 effectively inhibited the increase in cellular ROS levels, the activities of caspases 3 and 8, apoptosis, and cell death following H/R, whereas Ad2/CMVEV had no effect. Despite its ability to abolish the increase in caspase activity and partially inhibit apoptosis, the pan-caspase inhibitor ZVAD-fmk (100 muM) failed to significantly reduce cell death induced by H/R. N-acetyl-L-cysteine, an antioxidant, completely inhibited H/R-induced increase in cellular ROS levels, but reduced apoptosis and cell death by 30% only. Conclusions: Adenovirus-mediated expression of p35 effectively inhibits H/R-induced cardiomyocyte apoptosis by reducing cellular ROS levels and inhibiting caspase activity. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据