4.5 Article

Molecular spintronics: spin-dependent electron transport in molecular wires

期刊

CHEMICAL PHYSICS
卷 281, 期 2-3, 页码 311-324

出版社

ELSEVIER
DOI: 10.1016/S0301-0104(02)00566-9

关键词

-

向作者/读者索取更多资源

We present a theoretical study of spin-dependent transport through molecular wires bridging ferromagnetic metal nanocontacts. We extend to magnetic systems a recently proposed model that provides a quantitative explanation of the conductance measurements of Reed et al. [Science 278 (1997) 252] on Au break-junctions bridged by self-assembled molecular monolayers (SAMs) of 1,4-benzene-dithiolate (BDT) molecules. Based on our calculations, we predict that spin-valve behavior should be observable in nickel break-junctions bridged by SAMs formed from BDT. We also consider spin transport in systems consisting of a clean ferromagnetic nickel STM tip and SAMs of benzene-thiol molecules on gold and nickel substrates. We find that spin-valve behavior should be possible for the Ni substrate. For the case where the substrate is gold, we show that it should be possible to inject a highly spin-polarized current into the substrate. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据