4.5 Article

The nitrogen budget of a pine forest under free air CO2 enrichment

期刊

OECOLOGIA
卷 132, 期 4, 页码 567-578

出版社

SPRINGER-VERLAG
DOI: 10.1007/s00442-002-0996-3

关键词

elevated CO2; nitrogen; net primary production; N limitation; nutrient-use efficiency

类别

向作者/读者索取更多资源

Elevated concentrations of atmospheric CO2 increase plant biomass, net primary production (NPP) and plant demand for nitrogen (N). The demand for N set by rapid plant growth under elevated CO2 could be met by increasing soil N availability or by greater efficiency of N uptake. Alternatively, plants could increase their nitrogen-use efficiency (NUE), thereby maintaining high rates of growth and NPP in the face of nutrient limitation. We quantified dry matter and N budgets for a young pine forest exposed to 4 years of elevated CO2 USing free-air CO2 enrichment technology. We addressed three questions: Does elevated CO2 increase forest NPP and the demand for N by vegetation? Is demand for N met by greater uptake from soils, a shift in the distribution of N between plants, microbes, and soils, or increases in NUE under elevated CO2? Will soil N availability constrain the NPP response of this forest as CO2 fumigation continues? A step-function increase in atmospheric CO2 significantly increased NPP during the first 4 years of this study. Significant increases in NUE under elevated CO2 modulated the average annual requirement for N by vegetation in the first and third growing seasons under elevated CO2; the average stimulation of NPP in these years was 21% whereas the average annual stimulation of the N requirement was only 6%. In the second and fourth growing seasons, increases in NPP increased the annual requirement for N by 27-33%. Increases in the annual requirement for N were largely met by increases in N uptake from soils. Retranslocation of nutrients prior to senescence played only a minor role in supplying the additional N required by trees growing under elevated CO2. NPP was highly correlated with between-plot variation in the annual rate of net N mineralization and CO2 treatment. This demonstrates that NPP is colimited by C availability, as CO2 from the atmosphere, and N availability from soils. There is no evidence that soil N mineralization rates have increased under elevated CO2. The correlation between NPP and N mineralization rates and the increase in the annual requirement for N in certain years imply that soil N availability may control the long-term productivity response of this ecosystem to elevated CO2. Although we have no evidence suggesting that NPP is declining in response to >4 years of CO2 fumigation, if the annual requirement of N continues to be stimulated by elevated CO2, we predict that the productivity response of this forest ecosystem will decline over time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据