4.5 Article

Peroxynitrite enhances astrocytic volume-sensitive excitatory amino acid release via a src tyrosine kinase-dependent mechanism

期刊

JOURNAL OF NEUROCHEMISTRY
卷 82, 期 4, 页码 903-912

出版社

WILEY
DOI: 10.1046/j.1471-4159.2002.01037.x

关键词

anion channels; cell swelling; excitotoxicity; glutamate; ischemia; nitric oxide

资金

  1. PHS HHS [35205] Funding Source: Medline

向作者/读者索取更多资源

Volume-regulated anion channels (VRACs) are critically important for cell volume homeostasis, and under pathological conditions contribute to neuronal damage via excitatory amino (EAA) release. The precise mechanisms by which brain VRACs are activated and/or modulated remain elusive. In the present work we explored the possible involvement of nitric oxide (NO) and NO-related reactive species in the regulation of VRAC activity and EAA release, using primary astrocyte cultures. The NO donors sodium nitroprusside and spermine NONOate did not affect volume-activated d-[(3) H]aspartate release. In contrast, the peroxynitrite (ONOO- ) donor 3-morpholinosydnomine hydrochloride (SIN-1) increased volume-dependent EAA release by approx. 80-110% under identical conditions. Inhibition of ONOO- formation with superoxide dismutase completely abolished the effects of SIN-1. Both the volume- and SIN-1-induced EAA release were sensitive to the VRAC blockers NPPB and ATP. Further pharmacological analysis ruled out the involvement of cGMP-dependent reactions and modification of sulfhydryl groups in the SIN-1-inducedmodulation of EAA release. The src family tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2), but not its inactive analog PP3, abolished the effects of SIN-1. A broader spectrum tyrosine kinase inhibitor tyrphostin A51, also completely eliminated the SIN-1-induced EAA release. Our data suggest that ONOO- up-regulates VRAC activity via a src tyrosine kinase-dependent mechanism. This modulation may contribute to EAA-mediated neuronal damage in ischemia and other pathological conditions favoring cell swelling and ONOO- production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据