4.7 Article

Nitric oxide down-regulates connective tissue growth factor in rat mesangial cells

期刊

KIDNEY INTERNATIONAL
卷 62, 期 2, 页码 401-411

出版社

BLACKWELL PUBLISHING INC
DOI: 10.1046/j.1523-1755.2002.00462.x

关键词

representational difference analysis; cell proliferation; adhesion; apoptosis; fibrosis and NO; S-nitroso-glutathione

向作者/读者索取更多资源

Background. Nitric oxide (NO) exerts complex regulatory actions on mesangial cell (MC) biology, such as inhibition of proliferation, adhesion or contractility and induction of apoptosis. In our previous studies the NO-donor S-nitroso-glutathione (GSNO) was found to be a potent inhibitor of MC growth. This effect was mediated at least in part by inhibitory effects of GSNO on the transcription factor early growth response gene-1 (Egr-1) [10]. We therefore were interested in the regulation of gene expression in MC after treatment with NO. Methods. To identify the genes that are regulated by NO in MC, gene expression was analyzed by representational difference analysis. Expression of connective tissue growth factor (CTGF) was studied by Northern and Western blot analyses. Results. Cultured rat MCs treated with GSNO for 8 hours were compared with unstimulated MCs and the CTGF mRNA was found to be down-regulated. The down-regulation was dose-dependent and transient, with a maximum inhibition seen after 6 hours. In parallel, down-regulation of CTGF protein by GSNO was observed by Western blot analysis. Other NO-donors such as S-nitroso-N-acetyl-D,L-penicillamine and spermine-NO showed similar effects. The induction of the inducible NO-synthase by TNF-alpha, IL-1beta and LPS provoked a transient down-regulation of CTGF mRNA, an effect that could be partially overcome by pretreatment with the NOS-inhibitor N-omega-nitro-L-arginine methyl ester. The observed NO-effect could be simulated by treatment with the stable cGMP analog 8br-cGMP, and was abolished by blocking the guanylyl cyclase with the inhibitor NS2028. Conclusion. NO acts as a strong repressor of CTGF expression in cultured rat MC. Thus, in addition to its antiproliferative effects, NO potentially exerts antifibrotic activity by down-regulation of CTGF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据