4.6 Article

Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore -: art. no. 054106

期刊

PHYSICAL REVIEW B
卷 66, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.054106

关键词

-

向作者/读者索取更多资源

The complex dielectric response of Bi1.5Zn1.0Nb1.5O7 cubic pyrochlore ceramics was investigated between 100 Hz and 100 THz by a combination of low-frequency capacitance bridges, a high-frequency coaxial technique, time domain transmission THz spectroscopy, and infrared spectroscopy. The data obtained between 10 K and 400 K revealed glasslike dielectric behavior: dielectric relaxation is observed over a wide frequency and temperature range, and the dielectric permittivity and loss maxima shift to higher temperature values by almost 200 K with increasing measuring frequency. The distribution of relaxation frequencies broadens on cooling and can be described by a uniform distribution. The high-frequency end of the distribution at similar to10(11) Hz is almost temperature independent and its low-frequency end obeys the Arrhenius Law with an activation energy of similar to0.2 eV. The relaxation is assigned to the local hopping of atoms in the A and O' positions of the pyrochlore structure among several local potential minima. The barrier height for hopping is distributed between 0 and 0.2 eV. Such an anomalously broad distribution may have its origin in the inhomogeneous distribution of Zn2+ atoms and vacancies on Bi3+ sites, which gives rise to random fields and nonperiodic interatomic potential. Frequency independent dielectric losses (1/f noise) are observed at low temperatures, which seems to be a universal behavior of disordered systems at low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据