4.7 Article

Inhibition of cancer growth by resveratrol is related to its low bioavailability

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 33, 期 3, 页码 387-398

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0891-5849(02)00911-5

关键词

resveratrol; bioavailability; oxidative stress; polyphenols; flavonoids; antioxidants; cancer; chemotherapy; free radicals

向作者/读者索取更多资源

The relationship between resveratrol (RES) bioavalability and its effect on tumor growth was investigated. Tissue levels of RES were studied after i.v. and oral administration of trans-resveratrol (t-RES) to rabbits, rats, and mice. Half-life of RES in plasma, after i.v. administration of 20 mg t-RES/kg b.wt., was very short (e.g., 14.4 min in rabbits). The highest concentration of RES in plasma, either after i.v. or oral administration (e.g., 2.6 +/- 1.0 muM in mice 2.5 min after receiving 20 mg t-RES/kg orally), was reached within the first 5 min in all animals studied. Extravascular levels (brain, lung, liver, and kidney) of RES, which paralleled those in plasma, were always < I nmol/g fresh tissue. RES measured in plasma or tissues was in the trans form (at least 99%). Hepatocytes metabolized t-RES in a dose-dependent fashion (e.g., 43 nmol of t-RES/g X min in the presence of 20 muM tRES), which means that the liver can remove circulating RES very rapidly. In vitro B 16 melanoma (B16M) cell proliferation and generation of reactive oxygen species (ROS) was inhibited by t-RES in a concentration-dependent fashion (100% inhibition of tumor growth was found in the presence of 5 AM t-RES). Addition of 10 muM H2O2 to B16M cells, cultured in the presence of 5 AM t-RES, reactivated cell growth. Oral administration of t-RES (20 mg/kg twice per day; or included in the drinking water at 23 mg/l) did not inhibit growth of B16M inoculated into the footpad of mice (solid growth). However, oral administration of t-RES (as above) decreased hepatic metastatic invasion of B16M cells inoculated intrasplenically. The antimetastatic mechanism involves a t-RES (I muM)-induced inhibition of vascular adhesion molecule I (VCAM-1) expression in the hepatic sinusoidal endothelium (HSE), which consequently decreased in vitro B16M cell adhesion to the endothelium via very late activation antigen 4 (VLA-4). (C) 2002 Elsevier Science Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据