4.4 Article

A Brownian model for recurrent earthquakes

期刊

出版社

SEISMOLOGICAL SOC AMER
DOI: 10.1785/0120010267

关键词

-

向作者/读者索取更多资源

We construct a probability model for rupture times on a recurrent earthquake source. Adding Brownian perturbations to steady tectonic loading, produces a stochastic load-state process. Rupture is assumed to occur when this process reaches a critical-failure threshold. An earthquake relaxes the load state to a characteristic ground level and be-gins a new failure cycle. The load-state process is a Brownian relaxation oscillator. Intervals between events have a Brownian passage-time distribution that may serve as a temporal model for time-dependent, long-term seismic forecasting. This distribution has the following noteworthy properties: (1) the probability of immediate rerupture is zero; (2) the hazard rate increases steadily from zero at t = 0 to a finite maximum near the mean recurrence time and then decreases asymptotically to a quasi-stationary level, in which the conditional probability of an event becomes time independent; and (3) the quasi-stationary failure rate is greater than, equal to, or less than the mean failure rate because the coefficient of variation is less than, equal to, or greater than 1/ root2 approximate to 0.707. In addition, the model provides expressions for the hazard rate and probability of rupture on faults for which only a bound can be placed on the time of the last rupture. The Brownian relaxation oscillator provides a connection between observable event times and a formal state variable that reflects the macromechanics of stress and strain accumulation. Analysis of this process reveals that the quasi-stationary distance to failure has a gamma distribution, and residual life has a related exponential distribution. It also enables calculation of interaction effects due to external perturbations to the state, such as stress-transfer effects from earthquakes outside the target source. The influence of interaction effects on recurrence times is transient and strongly dependent on when in the loading cycle step perturbations occur. Transient effects may be much stronger than would be predicted by the clock change method and characteristically decay inversely with elapsed time after the perturbation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据