4.6 Article

Quantum-information processing by nuclear magnetic resonance: Experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system

期刊

PHYSICAL REVIEW A
卷 66, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.66.022313

关键词

-

向作者/读者索取更多资源

The advantages of using quantum systems for performing many computational tasks have already been established. Several quantum algorithms have been developed which exploit the inherent property of quantum systems such as superposition of states and entanglement for efficiently performing certain tasks. The experimental implementation has been achieved on many quantum systems, of which nuclear magnetic resonance has shown the largest progress in terms of number of qubits. This paper describes the use of a spin-7/2 as a three-qubit system and experimentally implements the half-adder and subtractor operations. The required qubits are realized by partially orienting Cs-133 nuclei in a liquid-crystalline medium, yielding a quadrupolar split well-resolved septet. Another feature of this paper is the proposal that labeling of quantum states of system can be suitably chosen to increase the efficiency of a computational task.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据