4.6 Article

Thermal explosion near bifurcation: stochastic features of ignition

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-4371(02)00824-5

关键词

master equation for thermal process; thermal explosion; first passage time in bistable system

向作者/读者索取更多资源

We study stochastic effects in a thermochemical explosive system exchanging heat with a thermostat. We use a mesoscopic description based on the master equation for temperature which includes a transition rate for the Newtonian thermal transfer process. This master equation for a continuous variable has a complicated integro-differential form and to solve it we resort to Monte Carlo simulations. The results of the master equation approach are compared with those of direct simulations of the microscopic particle dynamics in a dilute gas system. We study the Semenov model in the vicinity of the bifurcation related to the emergence of bistability. The probability distributions of ignition time are calculated below and above the bifurcation point. An approximate analytical prediction for the main statistical properties of ignition time is deduced from the Fokker-Planck equation derived from the master equation. The theoretical results are compared with the experimental data obtained for cool flames of a hydrocarbon in the explosive regime. (C) 2002 Published by Elsevier Science B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据