4.7 Article

PCR-based ordered genomic libraries:: A new approach to drug target identification for Streptococcus pneumoniae

期刊

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
卷 46, 期 8, 页码 2507-2512

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.46.8.2507-2512.2002

关键词

-

向作者/读者索取更多资源

Described here are the development and validation of a novel approach to identify genes encoding drug targets in Streptococcus pneumoniae. The method relies on the use of an ordered genomic library composed of PCR amplicons that were generated under error-prone conditions so as to introduce random mutations into the DNA. Since some of the mutations occur in drug target-encoding genes and subsequently affect the binding of the drug to its respective cellular target, amplicons containing drug targets can be identified as those producing drug-resistant colonies when transformed into S. pneumoniae. Examination of the genetic content of the amplicon giving resistance coupled with bioinformatics and additional genetic approaches could be used to rapidly identify candidate drug target genes. The utility of this approach was verified by using a number of known antibiotics. For drugs with single protein targets, amplicons were identified that rendered S. pneumoniae drug resistant. Assessment of amplicon composition revealed that each of the relevant amplicons contained the gene encoding the known target for the particular drug tested. Fusidic acid-resistant mutants that resulted from the transformation of S. pneumoniae with amplicons containing fusA were further characterized by sequence analysis. A single mutation was found to occur in a region of the S. pneumoniae elongation factor G protein that is analogous to that already implicated in other bacteria as being associated with fusidic acid resistance. Thus, in addition to facilitating the identification of genes encoding drug targets, this method could provide strains that aid future mechanistic studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据