4.5 Article

Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: Samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals

期刊

JOURNAL OF APPLIED CRYSTALLOGRAPHY
卷 35, 期 -, 页码 383-400

出版社

BLACKWELL MUNKSGAARD
DOI: 10.1107/S0021889802008798

关键词

-

向作者/读者索取更多资源

The International Union of Crystallography (IUCr) Commission on Powder Diffraction (CPD) has sponsored a round robin on the determination of quantitative phase abundance from diffraction data. The aims of the round robin have been detailed by Madsen et al. [J. Appl. Cryst. (2001), 34, 409-426]. In summary, they were (i) to document the methods and strategies commonly employed in quantitative phases analysis (QPA), especially those involving powder diffraction, (ii) to assess levels of accuracy, precision and lower limits of detection, (iii) to identify specific problem areas and develop practical solutions, (iv) to formulate recommended procedures for QPA using diffraction data, and (v) to create a standard set of samples for future reference. The first paper (Madsen et al., 2001) covered the results of sample 1 (a simple three-phase mixture of corundum, fluorite and zincite). The remaining samples used in the round robin covered a wide range of analytical complexity, and presented a series of different problems to the analysts. These problems included preferred orientation (sample 2), the analysis of amorphous content (sample 3), microabsorption (sample 4), complex synthetic and natural mineral suites, along with pharmaceutical mixtures with and without an amorphous component. This paper forms the second part of the round-robin study and reports the results of samples 2 (corundum, fluorite, zincite, brucite), 3 (corundum, fluorite, zincite, silica flour) and 4 (corundum, magnetite, zircon), synthetic bauxite, natural granodiorite and the synthetic pharmaceutical mixtures (mannitol, nizatidine, valine, sucrose, starch). The outcomes of this second part of the round robin support the findings of the initial study. The presence of increased analytical problems within these samples has only served to exacerbate the difficulties experienced by many operators with the sample 1 suite. The major difficulties are caused by lack of operator expertise, which becomes more apparent with these more complex samples. Some of these samples also introduced the requirement for skill and judgement in sample preparation techniques. This second part of the round robin concluded that the greatest physical obstacle to accurate QPA for X-ray based methods is the presence of absorption contrast between phases (microabsorption), which may prove to be insurmountable in some circumstances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据